Thermal effects can also contribute to reduce the switching fields. The dynamic dependence of the coercivity is usually analyzed using the Sharrock law [Sharrock 90], which is derived from the Arrhenius-Néel law. The application of the Sharrock law requires the energy barrier dependence on the applied field. In this section we evaluate that dependence and study the thermal switching mechanism. We have calculated the energy barriers values using the Lagrange multiplier method discussed in Section 2.3.6, but in this case we have used the constraint , where is the average magnetization x component. This constraint has the advantage of having the form of an applied field in the X direction, allowing to obtain the energy barrier of an arbitrary applied field from the zero field energy barrier value [Lu 07].
The saddle points as well as the energy barrier vary with the applied field. Therefore, in this section we will refer to zero field saddle points as, simply, saddle points. As in the field switching, the thermal switching mechanisms are also different for different particle widths. For the large aspect ratio particles the thermal switching proceeds through a domain wall, as a saddle-point configuration shown in Fig. 4.16. The nucleation of the domain wall starts from the structures that are created by the magnetostatics in the particle ends (see Fig. 4.6). In the small aspect ratio particles the saddle point configuration consists of two domains, which point in one of the local directions of the biaxial anisotropy, as shown in Fig. 4.17. The domain wall is not located at the center of the particle since the domain wall is stabilized in the center of the particle and such configuration is a shallow minimum of the energy. This minimum is not present if the particle presents any imperfection. As in the hysteresis loops, the change of behavior is for a width ca. and is related to the length of the structures that minimize the magnetic charges. The zero field energy barrier as a function of the particle width is plotted in Fig. 4.18(b). The domain wall mechanism yields a linear dependence with the cross section. In our case there is a change in the slope due to the different effective anisotropy, being this slope larger for thinner particles due to their large shape anisotropy. Finally, for small aspect ratio the effective anisotropy is not dependent on the particle width obtaining a linear dependence of the energy barrier.
|
||
|
|
|
||
|
In Fig. 4.18 (a) the energy barrier values are shown as a function of the applied field value and the particle width. Several authors [Skomski 06] have found the applied field dependence of the energy barrier value to be:
From the scaling of the energy barrier value and the Arrhenius-Néel law, M.P. Sharrock [Sharrock 90] obtained the following expression for the thermal dependence of the coercivity, due to thermal relaxation during the hysteresis process: