1 Second-order surface-anisotropy energy

(25) |

here is the total effective field, J is the exchange constant, is the Laplace operator and is the anisotropy field, that in this case is due entirely to the surface.

(26) |

here R represents the radius of the spherical particle.

For the case of we can suppose that the deviations of of the homogeneous state are small and the problem can be linearized.

(27) |

The correction is the solution of the internal Neumann boundary problem for a sphere:

(28) |

(29) |

Then, solving the corresponding Neumann problem by the Green's function technique, we obtain:

(30) |

where is the Green function. Computing the energy of the multi-spin particle, it was found that the corresponding effective energy is of the order in the components of the net magnetic moment and the order in the surface anisotropy constant , that is

with

is a surface integral that depends on the underlying lattice, shape, and the size of the particle and also on the surface-anisotropy model. For instance, for a spherical particle cut from an sc lattice, with NSA. We would like to note that the contribution (2.14) scales with the system's volume and thus could renormalize the volume anisotropy of the nanoparticle.

The equation (2.15) was obtained analytically for
in the range of the particle size large enough (
) but small enough so that
remains small. Being
, the angle of order which describes the noncollinearity of the spins that results from the competition of the exchange interaction and the surface anisotropy ^{}.

Since is nearly size independent (i.e. the whole energy of the particle scales with the volume), it is difficult to experimentally distinguish between the core cubic anisotropy and the one due to the second order surface contribution (see discussion later on). The physical reason for the independence of on the system size is the deep penetration of the spin non-collinearities into the core of the particle. This means that the angular dependence of the non-collinearities also contributes to the effective anisotropy. Interestingly this implies that the influence of the surface anisotropy on the overall effective anisotropy is not an isolated surface phenomena and is dependent on the magnetic state of the particle. We note that this effect is quenched by the presence of the core anisotropy which could screen the effect at a distance of the order of domain wall width from the surface.

The energy contribution has also been derived in the presence of core anisotropy [73] and numerically tested in Ref. [87]. Similar conclusions also apply for the case of the transverse surface anisotropy, Ref. [87].

Rocio Yanes